Multivalent Microtubule Recognition by Tubulin Tyrosine Ligase-like Family Glutamylases
نویسندگان
چکیده
Glutamylation, the most prevalent tubulin posttranslational modification, marks stable microtubules and regulates recruitment and activity of microtubule- interacting proteins. Nine enzymes of the tubulin tyrosine ligase-like (TTLL) family catalyze glutamylation. TTLL7, the most abundant neuronal glutamylase, adds glutamates preferentially to the β-tubulin tail. Coupled with ensemble and single-molecule biochemistry, our hybrid X-ray and cryo-electron microscopy structure of TTLL7 bound to the microtubule delineates a tripartite microtubule recognition strategy. The enzyme uses its core to engage the disordered anionic tails of α- and β-tubulin, and a flexible cationic domain to bind the microtubule and position itself for β-tail modification. Furthermore, we demonstrate that all single-chain TTLLs with known glutamylase activity utilize a cationic microtubule-binding domain analogous to that of TTLL7. Therefore, our work reveals the combined use of folded and intrinsically disordered substrate recognition elements as the molecular basis for specificity among the enzymes primarily responsible for chemically diversifying cellular microtubules.
منابع مشابه
Deciphering the Tubulin Code
Enzymes of the tubulin tyrosine ligase-like (TTLL) family posttranslationally modify and thereby mark microtubules by glutamylation, generating specific recognition sites for microtubule-interacting proteins. Garnham et al. report the first structure of a TTLL protein alone and in complex with microtubules, elucidating their mechanism of action.
متن کاملStructural basis of tubulin tyrosination by tubulin tyrosine ligase
Tubulin tyrosine ligase (TTL) catalyzes the post-translational retyrosination of detyrosinated α-tubulin. Despite the indispensable role of TTL in cell and organism development, its molecular mechanism of action is poorly understood. By solving crystal structures of TTL in complex with tubulin, we here demonstrate that TTL binds to the α and β subunits of tubulin and recognizes the curved confo...
متن کاملTubulin Tyrosine Ligase Like 12, a TTLL Family Member with SET- and TTL-Like Domains and Roles in Histone and Tubulin Modifications and Mitosis
hTTLL12 is a member of the tubulin tyrosine ligase (TTL) family that is highly conserved in phylogeny. It has both SET-like and TTL-like domains, suggesting that it could have histone methylation and tubulin tyrosine ligase activities. Altered expression of hTTLL12 in human cells leads to specific changes in H4K20 trimethylation, and tubulin detyrosination, hTTLL12 does not catalyse histone met...
متن کاملDeconstructing FAK function
Polyglutamylation makes the cut L acroix et al. report that the addition of long glutamate side chains to tubulin stimulates microtubule disassembly by the microtubule-severing protein spastin. The C-terminal tails of tubulin subunits can be modifi ed in different ways, which might alter the recruitment of molecular motors and other microtubule-binding proteins. A family of glutamylase enzymes ...
متن کاملTubulin Glutamylation Regulates Ciliary Motility by Altering Inner Dynein Arm Activity
How microtubule-associated motor proteins are regulated is not well understood. A potential mechanism for spatial regulation of motor proteins is provided by posttranslational modifications of tubulin subunits that form patterns on microtubules. Glutamylation is a conserved tubulin modification [1] that is enriched in axonemes. The enzymes responsible for this posttranslational modification, gl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 161 شماره
صفحات -
تاریخ انتشار 2015